You are here

Hardware & Design

Data Storage Solution: Backup & Cloud

Data Availability
Data is usually made available by two means: reliability and ports of entry.

Effort has been made to buy reliable hardware. Top of the line SSD, motherboard, memory, CPU and power supplies are used in the server.

Data is made redundant by providing multiple on-line copies of data. This is achieved primarily through a RAID1 mirror and protects against bad sectors and disk failures.

At some point I should add a small UPS to protect against power outages and brown outs.

Data Storage Solution: Rationale

Introduction
Time to upgrade my ailing, 99% filled 350GB spinning disk mirror.

There were several end user requirements:

Data Storage Solution: Hardware & OS

Overview
This entry covers the technical details of the implementation.

I approached this by breaking down the stack into individual steps and then I conduct performance, security and data management reviews.

The Physical Stack

  • Storage Devices
  • Storage Controller
  • Server
  • Network
  • Site
  • User

Linear Algebra in Engineering: Summary (Part 7 of 7)

Preface
This series is aimed at providing tools for an electrical engineer to analyze data and solve problems in design. The focus is on applying linear algebra to systems of equations or large sets of matrix data.

Introduction
This article will attempt to organize the previous series of articles into a decision tree allowing you to quickly choose the best method for a particular problem.

Procedure
First, ask yourself some questions about your data and the type of answer you need.

Linear Algebra in Engineering: Analyzing Dynamic Systems with Markov Chains (Part 6 of 7)

Preface
This series is aimed at providing tools for an electrical engineer to analyze data and solve problems in design. The focus is on applying linear algebra to systems of equations or large sets of matrix data.

Introduction
This article will demonstrate the use of Markov Chains. This can be used to analyze models with cyclic or or repeated outcomes.

Linear Algebra in Engineering: Macroeconomics with Leontief Input-Output Model (Part 5 of 7)

Preface
This series is aimed at providing tools for an electrical engineer to analyze data and solve problems in design. The focus is on applying linear algebra to systems of equations or large sets of matrix data.

Introduction
This article will demonstrate the use of Leontief Input-Output Models. This can be used to analyze macroeconomic models of production.

Linear Algebra in Engineering: Analyzing Networks with Adjacency Matrices (Part 4 of 7)

Preface
This series is aimed at providing tools for an electrical engineer to analyze data and solve problems in design. The focus is on applying linear algebra to systems of equations or large sets of matrix data.

Introduction
This article will demonstrate the use of adjacency matrices to analyze interconnected vertices (for example map or network data).

Linear Algebra in Engineering: Trend Analysis with Polynomial Interpolation (Part 3 of 7)

Preface
This series is aimed at providing tools for an electrical engineer to analyze data and solve problems in design. The focus is on applying linear algebra to systems of equations or large sets of matrix data.

Introduction
This article will demonstrate the use polynomial interpolation.

Linear Algebra in Engineering: Trend Analysis with Polynomial Least Squares (Part 2 of 7)

Preface
This series is aimed at providing tools for an electrical engineer to analyze data and solve problems in design. The focus is on applying linear algebra to systems of equations or large sets of matrix data.

Introduction
This article will demonstrate the use of least squares fit real data to a polynomial.

Linear Algebra in Engineering: Equilibrium in Linear Systems (Part 1 of 7)

Preface
This series is aimed at providing tools for an electrical engineer to analyze data and solve problems in design. The focus is on applying linear algebra to systems of equations or large sets of matrix data.

Introduction
This article will demonstrate the use of matrix algebra to solve for equilibrium in systems. This is common in network flow, economics and electrical circuits (current and voltage analysis). We will apply exact and least squares solutions.

Pages

Subscribe to RSS - Hardware & Design